AKTUALNY STAN PŁA TORFOWCOWEGO W DYSTROFICZNYM JEZIORZE SMOLAK 28 LAT PO ZAKOŃCZENIU WAPNOWANIA I NAWOŻENIA MINERALNEGO

Andrzej Hutorowicz

Instytut Rybactwa Śródlądowego im. St. Sakowicza, ul. Oczapowskiego 10, 10-719 Olsztyn
e-mail: ahut@infish.com.pl

Słowa kluczowe: jezioro dystroficzne, pło torfowcowe, wapnowanie i nawożenie, wieloletnie tendencje zmian

WSTĘP

Brzegi jezior dystroficznych porastają torfowce, tworzące charakterystyczne dla tej grupy jezior torfowiska pływające [20]. Pokrywają one przybrzeżną część lustra wody. W ich obrębie wyraźnie zarysowuje się strefowy układ roślinności. Najmłodszy, najcieniowy i najmniej zwarty zewnętrzny pas (przy granicy zwierciadła wody) zazwyczaj nie przekracza 0,5 m szerokości. Tworzą go Sphagnum i turzyce, spośród których dominuje Carex limosa L. [17, 14, 20]. Druga, znacznie grubsza i bardziej zwarta, strefa osiąga do 4 m. szerokości. Dominują w niej różne gatunki Sphagnum oraz Rhynchospora alba (L.) Vahl., przy dużym udziale Drosera spp., Menyanthes trifoliata L. i Comarum palustre L. [17]. Trzecia strefa, tworzona przez torfowce z Eriophorum vaginatum L. oraz krzewinki z rodziny Ericaceae, może osiągać ponad 10 m szerokości. Często jest to najwyższa część torfowiska. Między nią a następną strefą (bór bagienny) może występować zato-
piony okrajek [20]. Połączenie płynącego kobierca torfowców z warstwą osa-
dów następuje pod trzecią strefą pła [17].

Torfowiska pełnią istotną funkcję strukturotwórczą w ekosystemach jezior
dystroficznych. Stanowią one filtr ograniczający dopływ substancji mineralnych
docierających drogą wodną z gleb zlewni do wody tych jezior [4]. Pływający
kobierzec torfowców jest obfitym źródłem kwasów humusowych, które są stale
dobierane przez wodę jeziorną [20]. Wielkość ładunku kwasów humusowych,
a właściwie stosunek ładunku kwasów humusowych i ładunku substancji mine-
ralnych determinuje kierunek ewolucji jezior. Jedynie nadmiar kwasów humuso-
wych umożliwia zwiększenie całego ładunku substancji mineralnych i powoduje
zakwaszenie wody. Zapewnia to trwałość kompleksów mineralno-humusowych,
co z kolei jest warunkiem nieodwracalności procesu dystrofizacji [5, 19].

Ogólny zarys tendencji zmian pomostu torfowcowego został przedstawiony
w monografii jeziora Smolak, opisującej wieloletnie zmiany tego ekosystemu,
jakie zachodziły w ciągu dwudziestu trzech lat po ukończeniu wapnowania
i nawożenia [10]. Opublikowany tam został plan batymetryczny jeziora
z początku lat pięćdziesiątych, na którym był zaznaczony zasięg pła torfo-
wcowego. Na podstawie literatury zestawiono też dane o składzie gatunkowym
roślinności przed wapnowaniem i nawożeniem mineralnym, oraz o zmianach
w okresie wapnowania. Zakwestionowano wcześniejsze doniesienia o całkowi-
tym ustawieniu pła w okresie wapnowania [1]. Ponowna inwentaryzacja składu
gatunkowego pła torfowcowego w jeziorze Smolak została przeprowadzona dopierw w 1994 roku [2]. Zaobserwowano też powiększanie się „oczek wody”
w zwartej powierzchni mżaru [10]. Wskazują one na proces stopniowego zani-
kania płynącego pomostu torfowcowego w jeziorze. W literaturze brak jest
jednak oceny tempa tych zmian. Nie ma też dokładnej, udokumentowanej pla-
nem, oceny szerokości płynącego pomostu torfowcowego, stanowiącej podsta-
wę do weryfikacji wcześniejszych spostrzeżeń, mówiących o stopniowym zani-
kaniu płynącego kobierca torfowcowego. Celem niniejszego opracowania była
więc ocena aktualnego stanu oraz tempa zanikania pła torfowcowego w jeziorze
Smolak.
MATERIAŁ I METODY

Przed wapnowaniem i nawożeniem, tj. na początku lat 50. ub. stulecia, rośliność porastała około 35% powierzchni jeziora [13, 15]. Niemal całe jezioro otaczał zwarty pas „turzyc rosnących na torfie”. Sporządzony w Instytucie Rybactwa Śródlądowego w pierwszej połowie lat pięćdziesiątych plan batymetryczny jeziora pokazuje, że przy południowo-zachodnim brzegu na powierzchnię wody nasuwał się pas torfowców o szerokości około 45 m. Pomost torfowcowy był najwęższy (ok. 7 m) przy brzegu północno-wschodnim (Rys. 1). W obrębie mszaru notowano *Drosera rotundifolia* L., *Calla palustris* L. i *Menyanthes trifoliata*. W południowej części jeziora odnotowano kilka pojedynczych stanowisk *Typha latifolia* L., a przy brzegu południowo-zachodnim *Nuphlea alba* L. [1, 18].

Na skutek długotrwałego wapnowania zmieniły się parametry fizyczne

Rys. 1. Plan batymetryczny jeziora Smolak z połowy lat pięćdziesiątych z zaznaczonym zasięgiem pła torfowcowego (1)

Fig. 1. Bathymetric map of the Lake Smolak from 50th years with the range of mossy floating mats

Inwentaryzację aktualnego stanu kobierca torfowców przeprowadzono w dniach 13 i 14 listopada 2002 roku, metodą transekt opuszczonego cały brzeg jeziora. Obniżony poziom wody pozwolił precyzyjnie ustalić granicę pływającego pomostu torfowcowego. Na niektórych odcinkach, o najmniejszym nachyleniu misy w południowej części jeziora, granicę wyznaczono w miejscu występowania dość wyraźnego zatopionego okrajka. Za pomocą urządzenia po-
miarowego GPS eMap wyznaczono 319 punktów, rejestrując jednocześnie przebytą trasę (track log points). Zebrane dane, po uprzednim odrzuceniu pomiarów obarczonych grubym błędem, posłużyły do wykreślenia mapy zasięgu pływającego kobierca torfowcowego. Rozmieszczenie punktów odwzorowano w układzie współrzędnych geograficznych przy pomocy programu Waypoint. Skalę odległości wyznaczono na podstawie mapy topograficznej GUGiK w skali 1:100 000. Dodatkowo zweryfikowano ją na podstawie pomiaru odległości pomiędzy dwoma wybranymi punktami. Pomiary szerokości oraz powierzchni pasa torfowcowego przeprowadzono przy pomocy programu pomiarowego MultiScan.

WYNIKI

Pływające torfowisko nie tworzyło jednolitego pasa okalającego brzegi jeziora. Stwierdzono występowanie 10 fragmentów pły. Jednak tylko trzy z nich miały długość zawierającą się w przedziale od 142 do 177 m. Długość pozostałych fragmentów wahała się od 8 do 54 m. Łącznie pływające pło otaczało 653 m linii brzegowej, co stanowiło zaledwie 51% jej całkowitej długości. Najdłuższy odcinek całkowicie odsłoniętego brzegu (niespełna 200 m), tak jak to donosiły wcześniejsze opracowania, znajdował się przy północno-zachodnim brzegu (Rys. 2). Przy brzegu północno-wschodnim długość linii brzegowej pozbawionej osłony wynosiła 193 m, chociaż stwierdzono tu występowanie dwóch małych fragmentów pływającego pomostu o łącznej długości 37 m. Długie pasy pomostu występowały wyłącznie w południowej części jeziora.

Pływające pło torfowcowe jeziora Smolak było niezbyt szerokie. Spośród 76 pomiarów szerokości, 24% ogólnej liczby (18 pomiarów) mieściło się w granicach od 1 do 2 m szerokości, natomiast prawie 50% wartości pomiarów – w przedziale do 3 m szerokości (Rys. 3). Najszersze fragmenty pła występowały w niewielkiej zatoczce przy brzegu zachodnim. Średnia szerokość pły wynosiła tu 7,2 m, a zakres zmienności zawierał się w przedziale od 5 do 9 m. Ten fragment pła należał do większego płatu ciągnącego się wzdłuż brzegu zachodnio-południowego. Średnia szerokość pomostu w całym płacie była już jednak dwukrotnie mniejsza (3,7 m), natomiast zakres zmienności znacznie większy (1-9 m). Podobną szerokość maksymalną pomostu (~9 m) stwierdzono przy północno-zachodnim brzegu jeziora. Jednak średnia szerokość tego niewielkiego płatu (54 m długości) była już nieco mniejsza (4,7 m).
Płat pływającego pła położony przy południowym brzegu jeziora był stosunkowo wąski. Średnia szerokość wynosiła tu 3,4 m, a maksymalna zaledwie około 6 m. W tym płacie znajdowało się aż siedem, z ogólnej liczby ośmiu, niewielkich oczek otwartej wody, a w części zachodniej także mała zatoczka o wymiarach 7 x 4 m. Najprawdopodobniej powstała ona na skutek przerwania wąskiego pasa torfowców oddzielających oczko wody od otwartego lustra wody. Wymiary pozostałych oczek wody w tym płacie pła wahały się od 2 x 2,5 m do 5 x 2 m. Prosto- kątne oczko wody o wymiarach 6 x 3 m stwierdzono także w płacie pła przy zachodnim brzegu jeziora (Rys. 3).

Powierzchnia całkowita jeziora (powierzchnia otwartej wody + powierzchnia pływającego pomostu torfowcowego) wynosiła 63 700 m². Pływający pomost torfowcowy zajmował zaledwie nieco ponad 3% tej powierzchni (Tab. 1). Powierzchnia niewielkich oczek wodnych w obrębie pła wahała się od ok. 1 do 14 m². Łącznie ich powierzchnia stanowiła nieco powyżej 2% sumarycznej powierzchni pływającego pomostu torfowcowego.
Rys. 3. Rozkład szerokości pływającego pomostu torfowcowego w jeziorze Smolak w listopadzie 2002 r. \(n=76\)
Fig. 3. Distribution of width of the mossy floating mats in Lake Smolak in November 2002 \(n=76\)

<table>
<thead>
<tr>
<th>Obiekty – Objects</th>
<th>Powierzchnia – Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pływający pomost torfowcowy – Mossy floating mats</td>
<td>2100</td>
</tr>
<tr>
<td>„Oczka wody” w pomoście torfowcowym – “Water patches” on mossy mats:</td>
<td></td>
</tr>
<tr>
<td>minimalna – minimal</td>
<td>0.9</td>
</tr>
<tr>
<td>maksymalna – maximal</td>
<td>14.5</td>
</tr>
<tr>
<td>średnia – mean</td>
<td>6.1</td>
</tr>
<tr>
<td>mediana – median</td>
<td>5.3</td>
</tr>
<tr>
<td>całkowita – total</td>
<td>48.8</td>
</tr>
</tbody>
</table>

DYSKUSJA
Stopień zarośnięcia jezior dystroficznych zależy od wielu czynników. Jednym z najważniejszych ośrodków ekspansji roślin w tego typu jeziorach jest pływający pomost torfowcowy. Zarastaniu jezior sprzyja dobrze rozwinięta linia brzegowa, mała powierzchnia jeziora, łagodny stok misy jeziorniej i otoczenie jeziora borem sosnowym [17]. Natomiast duża powierzchnia jeziora, krótsza linia brzegowa, duża głębokość jeziora, stromy stok misy jeziorniej, mineralny brzeg wpływają
hamująco na tempo tego procesu. Bardzo istotnym elementem wpływającym na tempo zarastania jest odczyn wody. Wapnienie średnio kwaśnego (pH 6,5) jeziora Thrush w stanie Minnesota (USA) spowodowało całkowite, szybkie usłanianie *Sphagnum platyphyllum*, który porastał głęboki litoral tego jeziora [6]. Ustępowanie torfowców z torfowisk obserwowano również w czasie wapnienia zlewni norweskiego jeziora Reyneindersvatn [8] oraz pięciu jezior w Szwecji [3]. Wzrost odczynu i zawartości wapnia przyczyniły się do obumierania torfowców, szczególnie *S. papillosum*, w wapnionym torfowisku będącym zlewnią bezpośrednią jeziora Loch Fleet w Szkocji [9]. Zasadowy odczyn wody jest toksyczny dla torfowców [7]. W jeziorze Smolak zasadowy odczyn wody (pH>7,0) utrzymuje się nieprzerwanie od zakończenia wapnienia, tj. od 1974 roku [10, 11]. Powoduje to zanikanie pływającego pomostu torfowcowego w jeziorze, o czym świadczy powstawanie nowych i powiększanie się istniejących oczek wodnych w obrębie pomostu torfowcowego. Proces ten nie przebiega gwałtownie, jednak wobec braku wcześniejszych pomiarów trudno oszacować jego tempo. Utrzymujące się jeszcze płyty pomostu torfowcowego były dość duże, pomimo że po 1990 roku dość często notowano zasadowy odczyn wody przy powierzchni (w 24% pomiarów pH>8,0, a w latach 1996-1999 aż 20% pomiarów pH>9,0) [11].

Prawdopodobnie zanikanie pomostu, szczególnie w południowej części jeziora, polega na zmniejszaniu się miąższości pływającego pasa torfowców. Sobotka [17] stwierdziła istnienie dość wyraźnej tendencji do zwiększania się miąższości pomostu wraz z jego szerokością. Niemniej w niektórych sucharach suwalszczyzny obserwowała dość duże zróżnicowanie stosunku tych parametrów, np. pomost o szerokości około 10 m w Sucharach Wschodnim i Wielkim był stosunkowo cienki w porównaniu ze znacznie węższym pomostem w Sucharze Zachodnim. Dodatkowo grubość pomostu w jednym jeziorze nie była jednakowa.

Współcześnie jezioro Smolak jest bardzo słabo zarośnięte. Sobotka [17] stwierdziła, że w grupie sucharów znajdujących się w otoczeniu jeziora Wigry, a także Sucharów Osinńskich, najbardziej zarośnięte zbiorniki miały zarośnięte około 50% powierzchni, a najsłabiej – poniżej 20%. Wpływ pływającego pomostu torfowców na proces dystrofizacji jeziora Smolak jest więc raczej niewielki. Przypuszczenia te potwierdzają badania Kruka [12], prowadzone w układzie zeutrofizowego jeziora humusowego. Wykazały one istnienie tendencji do umiarowanego retencjonowania azotu przez torfowisko w ciągu roku o obfitych w opadach, a słabe wymykanie – w okresach ich deficytu. Podobnie zmieniały się procesy retencji i wymywania metali (Ca, Mg, K i Na), w zależności od zwiększonej retencji i przepływu wody przez torfowisko. Silnie wymywane były nato-
miast różne formy fosforu, a szczególnie rozpuszczonego fosforu organicznego. Proces ten był wzmacniany podczas gwałtownych roztopów, gdy zwiększonemu ładunkowi fosforu zawieszonoowego towarzyszyło wypłukiwanie z niego frakcji rozpuszczonej.

WNIOSEK

Przeprowadzone badania wskazują, że szerokość i udział pływającego pomostu torfowcowego w ogólnej powierzchni jeziora mogą być dobrym indykatorem stanu zbiornika humusowego. Potwierdzają to również niepublikowane wyniki pomiarów szerokości pomostu torfowcowego w zeutrofizowanym humusowym jeziorze Kacze (Mszar), w którym stwierdzono obecność bardzo niewielkich płatów pływającego pomostu torfowcowego, chociaż całe jezioro otoczone jest mszarem przechodzącym w bór bagienny (Hutorowicz, mat. niepubl).

PIŚMIENNICTWO

CURRENT CONDITION OF THE PEATMOSS MOOR IN THE DYSTROPHIC LAKE SMOLAK, 28 YEARS AFTER ITS LIMING AND MINERAL FERTILIZATION

Andrzej Hutorowicz

The Stanisław Sakowicz Inland Fisheries Institute, Oczapowskiego str. 10, 10-719 Olsztyn
e-mail: ahut@infish.com.pl

Summary. The measurements of the width and surface of the mossy floating mats were performed in the humic Lake Smolak 28 year after its liming and fertilization. The proceeding decay of peatmoss moor manifests itself by the forming and enlarging of the existing water eyelets in the peatmoss zone surrounding the lake. In the year 2002 peatmoss moor surrounded only 51% of the shoreline, occupying somewhat above 3% of the total lake area. The reason of this decay is, undoubtedly, alkaline water reaction.
Keywords: dystrophic lake, Sphagnum floating mat, liming and fertilization, long-term trend of changes