
OCENA PROCESU MINERALIZACJI AZOTU W GLEBACH WYBRANYCH
EKOSYSTEMÓW TORFOWISKOWYCH POLSKI
PÓŁNOCNO-WSCHODNIEJ W ASPEKcie OCHRONY ZASOBÓW
GLEBOWYCH

Jan Pawluczuk, Janusz Godkiewicz
Katedra Gleboznawstwa i Ochrony Gleb, Uniwersytet Warmińsko-Mazurski,
pl. Łódzki 3, 10-727 Olsztyn, e-mail: jan.pawluczuk@uwms.edu.pl

Streszczenie. Praca przedstawia wyniki badań nad mineralizacją organicznych połączeń azotu
w glebach dwóch obiektów torfowych w makroregionie Pojezierza Mazurskiego na terenach
młodoglacjalnych Polski północno-wschodniej. Rezultatem procesu mineralizacji jest uwalnianie azotu
mineralnego, ubytek materii organicznej, oraz obniżanie powierzchni gleb. Intensywność mineralizacji
była zróżnicowana w zależności od warunków siedliskowych, a zwłaszcza stanu odwodnienia gleb i ich
uwilgotnienia. Występowały wahania sezonowe w uwalnianiu się azotu mineralnego. Wykazano, że
wzmocniona mineralizacja, przebiegająca także podczas zimy, miała miejsce w odwodnionych,
ekstensywnie użytkowanych glebach torowo-murszowych. Ograniczona mineralizacja występowała
w glebach silnie uwilgotnionych. Zebrane wyniki mogą być wykorzystane dla ochrony i racjonalnego
użytkowania gleb torfowych.

Słowa kluczowe: tereny młodoglacjalne, gleby hydrologiczne, mineralizacja azotu, azot
azonowy, azot amonowy

WSTĘP

Na obszarach młodoglacjalnych Polski północno-wschodniej występuje znaczy
areał gleb torfowych [1,6]. Obok przydatności gospodarczej pełnią one ważną rolę
w środowisku. W omawianych glebach zachodzą z różnym nasileniem w zależności
od panujących warunków siedliskowych, procesy mineralizacji organicznych
połączeń azotu. Ich efektem jest uwalnianie azotu mineralnego (N-NO₃ i N-NH₄),
często w znacznych ilościach [2]. Nie wykorzystany przez rośliny azot, zwłaszcza
w formie azotanowej, przenika do wód powierzchniowych i gruntowych. Na skutek
ubytku materii organicznej ma miejsce stałe obniżanie się powierzchni gleb
torfowych [2]. Procesy mineralizacji powinny być kontrolowane i ograniczane.
Niniejsza praca zawiera wyniki badań nad uwalnianiem azotu w glebach torfowych dwóch typowych obiektów torfowych Pojezierza Mazurskiego.

ZAKRES I METODYKA BADAŃ

W wytypowanych odkrywkach pobierano próbki gleb z warstw 5-10, 25-30 i 35-40 cm dla identyfikacji utworów glebowych oraz analiz laboratoryjnych. Dokonywano pomiarów głębokości zalegania wody gruntowej. Oznaczano podstawowe właściwości fizyczne (popielność, gęstość objętościowa, gęstość właściwa, porowatość), metodami stosowanymi dla gleb organicznych [7]. Azot ogólny oznaczono metodą Kiejdaha. Próbki gleby do oznaczeń azotu mineralnego (N-NO₃ i N-NH₄) pobierano cylinderkami o pojemności 100 cm³ z zachowaniem naturalnej struktury. Oznaczenia wykonywano w terminie wiosennym, letnim, jesiennym oraz dodatkowo na obiekcie Siódmak w terminie zimowym. Gleby w cylinderkach inkubowano w okresie 14 dni w temperaturze 28°C. Po inkubacji oznaczano N-NO₃ w wyciągu 1% K₂SO₄ kolorymetrycznie metodą z kwasem disulfonofenolowym oraz N-NH₄ używając odczynnika Nesslera.

WYNIKI

Na omawianym terenie wytypowano do badań glebę Mt IIcb (profil 1). Jest to gleba torfowo-murszowa średnio zmurszala wytworzona z silnie rozłożonego torfu olesowego podścienionego średnio rozłożonym torfem turzycowiskowym.
Mała część obiektu w pobliżu rzeki Sawicy jest silnie uwilgotniona. Występują tam nie użytkowane obecnie łąki z roślinami bagiennymi w runi. Wytypowany na tym terenie do badań profil 2 reprezentuje płytką glebę torfowo-murszową wytworzoną z silnie rozłożonego torfu olesowego podścielonego gytium (Mt Illeb).

Na obiekcie Lutry występują małe torfowiska, do których dopływ wody określany jest jako soligeniczny typ hydrologicznego zasilania [5]. Woda do torfowisk dociera pod ciśnieniem z otaczających wysoczyzn zapewniając stałe uwilgotnienie. Do badań wytypowano dwa punkty badawcze na torfowisku niskim o powierzchni 19,4 ha. Profile 3 i 4 zlokalizowano na zmierzonowym, ekstensywnie użytkowym pastwisku. Występuje tam gleba torfowo-murszowa średnio zmurszała wytworzona z torfu silnie rozłożonego podścielonego torfem słabo rozłożonym. (Mt Illeb). Profil 3 znajduje się blisko wysoczyzny, a profil 4 jest od niej oddalony.

Właściwości fizyczne gleb obu obiektów w warstwie do 40 cm przedstawiono w Tabeli 1. Gleby obiektu Siódmak mają zwiększona zawartość części mineralnych (27,4%-profil 1, 23,8%-profil 2) co świadczy o ich zamulieniu. Gęstość objętościowa i gęstość właściwa jest typowa dla badanych gleb. Stwierdzono, że wyższą porowatością wynoszącą 88,24% charakteryzowała się gleba profilu 2.

Wierzchnia warstwa gleb obiektu Lutry jest zamulona. Wysoka popiołność, która waha się od 36,5% (profil 3) do 44% (profil 4) wpłynęła na zwiększenie gęstości objętościowej i właściwej. Porowatość gleby profilu 3 wynosi blisko 89% obj. i jest wyższa o 6% obj. stosunku do gleby profilu 4 (Tab. 1).

Tabela 1. Średnie wartości właściwości fizycznych gleb w warstwie do 40 cm
Table 1. Mean physical properties of soil in layer into 40 cm

<table>
<thead>
<tr>
<th>Nr profilu</th>
<th>Gleba Soil</th>
<th>Popiołność (%)</th>
<th>Gęstość obj. (g·cm⁻³)</th>
<th>Gęstość wł. Density (g·cm⁻³)</th>
<th>Porowatość (%) obj.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile No.</td>
<td></td>
<td>(% s.m.)</td>
<td>(g·cm⁻³)</td>
<td>(g·cm⁻³)</td>
<td></td>
</tr>
<tr>
<td>Siódmak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MtIleb</td>
<td>27,4</td>
<td>0,25</td>
<td>1,78</td>
<td>86,06</td>
</tr>
<tr>
<td>2.</td>
<td>MtIlch</td>
<td>23,8</td>
<td>0,20</td>
<td>1,74</td>
<td>88,24</td>
</tr>
<tr>
<td>Lutry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>MtIlca</td>
<td>36,5</td>
<td>0,38</td>
<td>1,85</td>
<td>88,88</td>
</tr>
<tr>
<td>4.</td>
<td>MtIlca</td>
<td>44,0</td>
<td>0,34</td>
<td>1,93</td>
<td>82,82</td>
</tr>
</tbody>
</table>
Między badanymi glebami występowały różnice w uwalgotnieniu związane z głębokością zalegania poziomu wody gruntowej i sposobem zasilania (Tab. 2). Na obiekcie Siódmak w glebie profilu 1 woda gruntowa występowała w ciągu całego roku na głębokości około 70 cm. W rezultacie miało miejsce przesuszenie wierzchniej warstwy gleby, zwłaszcza w okresie lata, kiedy wilgotność wynosiła około 63% obj. (Tab. 2).

W glebie profilu 2 obiekcie Siódmak poziom wody gruntowej był wysoki i wahał się od 0 cm podczas zimy do 37,5 cm latem. Dlatego w ciągu całego roku wilgotność gleby była bardzo wysoka. Wynosiła średnio około 87% obj. (Tab. 2).

Na obiekcie Lutry poziom wody gruntowej był w roku 2001 mało zróżnicowany ponieważ wahał się od 15 do 35 cm. Najbliżej powierzchni woda zalegała wiosną w glebie profilu 3 przy wysoczynie. Utrzymywało się wysokie uwalgotnienie zwłaszcza w glebie profilu 3 przekraczające jesienią 83% obj. W ciągu lata występowało krótkotrwałe przesuszenie zwłaszcza gleby profilu 4 (Tab. 2).

Tabela 2. Średnia wilgotność gleb w warstwie do 40 cm i poziom wody gruntowej

Table 2. Mean moisture of soils in layer into 40 cm and ground water level

<table>
<thead>
<tr>
<th>Nr profilu</th>
<th>Gleba</th>
<th>Termin</th>
<th>Wilgotność wodna</th>
<th>Poziom wody gruntowej</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr profilu</td>
<td>Soil</td>
<td>Term</td>
<td>(% obj., vol.)</td>
<td>Ground water level (cm)</td>
</tr>
<tr>
<td>Profile No.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siódmak 2000-2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MtIcb</td>
<td>Wiosna - Spring</td>
<td>76,5</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lato - Summer</td>
<td>63,2</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jesień - Autumn</td>
<td>71,8</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zima - Winter</td>
<td>80,6</td>
<td>71</td>
</tr>
<tr>
<td>2.</td>
<td>MtIcb</td>
<td>Wiosna - Spring</td>
<td>87,8</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lato - Summer</td>
<td>84,9</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jesień - Autumn</td>
<td>85,3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zima - Winter</td>
<td>89,9</td>
<td>0</td>
</tr>
<tr>
<td>Lutry 2001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>MtIca</td>
<td>Wiosna - Spring</td>
<td>78,0</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lato - Summer</td>
<td>71,2</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jesień - Autumn</td>
<td>83,6</td>
<td>20</td>
</tr>
<tr>
<td>4.</td>
<td>MtIca</td>
<td>Wiosna - Spring</td>
<td>74,7</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lato - Summer</td>
<td>65,7</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jesień - Autumn</td>
<td>79,8</td>
<td>25</td>
</tr>
</tbody>
</table>
Proces mineralizacji organicznych związków azotu przebiegał w badanych glebach w sposób zróżnicowany, głównie w zależności od stanu uwilgotnienia. Na obiekcie Siódmak zawartość N ogólnego była typowa dla gleb wytworzonych z torfów niskich. Wyszła 29,2 g·kg⁻¹ N w glebie profilu I oraz 30,5 g·kg⁻¹ N w glebie profilu 2.

W glebie przesuszonej profilu 1 stwierdzono znaczną zawartość azotu mineralnego (Nm) (Tab. 3). W okresie wiosennym ilość uwalnianego Nm wynosiła średnio 41,8 mg·dm⁻¹ z wyraźną przewagą N-NO₃ (31,2 mg·dm⁻¹). Według przyjętych norm [2] taką ilość N-NO₃ uznaje się za dużą. Należy sądzić, że zdegradowana ruń obiektu Siódmak nie może pobrać całego dostępnego azotu i znaczną część tego składnika jest tracona. W pozostałych terminach ilość uwalnianego Nm była niższa. Zwraca uwagę, że proces mineralizacji przebiegał także podczas zimy nawet z większym nasileniem niż jesienią (Tab. 3).

Dla oceny procesu mineralizacji duże znaczenie ma stosunek N-NO₃ do N- NH₄ [2]. W glebie profilu I stosunek ten w okresie wegetacyjnym był wysoki (1,3 do 6,8), co świadczy o dobrych warunkach do nitryfikacji. Tylko podczas zimy był niższy od 1 ze względu na niską temperaturę.

<table>
<thead>
<tr>
<th>Nr profilu</th>
<th>Gleba</th>
<th>N-NO₃ (mg·cm⁻³)</th>
<th>N-NH₄ (mg·cm⁻³)</th>
<th>Razem Total (mg·cm⁻³)</th>
<th>N-NO₃ / N-NH₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profile No.</td>
<td>Soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wiosna - Spring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. MtHlc</td>
<td>31,2</td>
<td>10,6</td>
<td>41,8</td>
<td>3,4</td>
<td></td>
</tr>
<tr>
<td>2. MtHch</td>
<td>9,0</td>
<td>9,6</td>
<td>18,6</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Lato - Summer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. MtHlc</td>
<td>20,7</td>
<td>16,7</td>
<td>37,4</td>
<td>1,3</td>
<td></td>
</tr>
<tr>
<td>2. MtHch</td>
<td>5,9</td>
<td>14,1</td>
<td>20,0</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>Jesień - Autumn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. MtHlc</td>
<td>12,3</td>
<td>1,8</td>
<td>14,1</td>
<td>6,8</td>
<td></td>
</tr>
<tr>
<td>2. MtHch</td>
<td>2,9</td>
<td>4,8</td>
<td>7,7</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Zima - Winter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. MtHlc</td>
<td>15,6</td>
<td>24,3</td>
<td>39,9</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>2. MtHch</td>
<td>1,7</td>
<td>19,5</td>
<td>21,2</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>
W silnie uwilgotnionej glebie obiektu Siódmak (profil 2) mineralizacja azotu była zahamowana w ciągu całego roku (Tab. 3). Zawartość N-NO₃ wahała się od 9,0 mg·dm⁻¹ wiosną (zawartość mała) do 1,7 mg·dm⁻¹ zimą (zawartość bardzo mała) [2]. W rezultacie stosunek N-NO₃ do N-NH₄ wynosił stałe poniżej 1 (Tab. 3).

Zawartość azotu ogólnego w glebach obiektu Lutry wynosiła 20,9 g·kg⁻¹ N (profil 3) oraz 19,6 g·kg⁻¹ N (profil 4).

Wyniki oznaczeń azotu mineralnego wskazują, że proces mineralizacji był ograniczony w glebach obu profili i przebiegał podobnie w badanych terminach sezonu wegetacyjnego (Tab. 4). Zawartość Nm wahała się od 5,5 do około 15,9 mg·dm⁻¹. Stwierdzono małe uwalnianie N-NO₃, którego ilość mieściła się w przedziale zasobności bardzo małej i małej [2]. W okresie wiosenny stosunek N-NO₃ do N-NH₄ wynosił poniżej 1, a w lecie i jesienią przekraczał zwykle nieznacznie tę wartość. Można zatem stwierdzić, że warunki siedliskowe obiektu Lutry sprzyjają ochronie gleb przed nadmierną mineralizacją.

Tab. 4. Średnia zawartość azotu mineralnego (N-NO₃ i N-NH₄) w glebach hydrologicznych obiektu Lutry w 2001 r.

<table>
<thead>
<tr>
<th>Nr profilu</th>
<th>Gleba</th>
<th>N-NO₃ (mg·cm⁻³)</th>
<th>N-NH₄ (mg·cm⁻³)</th>
<th>Razem Total (mg·cm⁻³)</th>
<th>N-NO₃/ N-NH₄</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Wiosna - Spring</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>MtIlca</td>
<td>4,67</td>
<td>7,16</td>
<td>11,83</td>
<td>0,65</td>
</tr>
<tr>
<td>4.</td>
<td>MtIlca</td>
<td>4,21</td>
<td>11,74</td>
<td>15,95</td>
<td>0,35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lato - Summer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>MtIlca</td>
<td>3,92</td>
<td>1,59</td>
<td>5,51</td>
<td>2,46</td>
</tr>
<tr>
<td>4.</td>
<td>MtIlca</td>
<td>7,19</td>
<td>4,55</td>
<td>11,74</td>
<td>1,58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jesień - Autumn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>MtIlca</td>
<td>6,33</td>
<td>6,34</td>
<td>12,67</td>
<td>1,00</td>
</tr>
<tr>
<td>4.</td>
<td>MtIlca</td>
<td>5,94</td>
<td>4,91</td>
<td>10,85</td>
<td>1,21</td>
</tr>
</tbody>
</table>

WNOSKI

1. Przeprowadzone badania wykazały, że mineralizacja organicznych związków azotu w glebach torfowo-murszowych obszarów młodoglacjalnych Polski północno-wschodniej była zróżnicowana w zależności od warunków siedliskowych, a zwłaszcza uwilgotnienia i sposobu dopływu wody.
2. Wykazano, że w przesuszonych glebach ekstensywnie użytkowanego obiektu Siódmał w strefie równin sandrowych mineralizacja może przybierać znaczne rozmiary. Następują straty azotu mineralnego i przyśpieszony rokład materii organicznej. Ważnym jest wykazanie, że proces mineralizacji przebiega także podczas zimy. Na tym samym obiekcie proces mineralizacji w glebach silnie uwilgotnionych był zahamowany.

4. Kontrola i ograniczanie procesu mineralizacji w badanych glebach torfowych jest możliwa w warunkach utrzymywania wysokiego uwilgotnienia. Jest ono potrzebne zwłaszcza na zmierzywanych obiektach nie użytkowanych lub użytkowanych ekstensywnie.

PIŚMIENNICTWO

EVALUATION OF THE NITROGEN MINERALIZATION PROCESS IN SOILS OF SOME PEAT ECOSYSTEMS OF NORTH-EASTERN POLAND IN THE ASPECT OF SOIL RESOURCES CONSERVATION

Jan Pawłuczuk, Janusz Gotkiewicz

Departament of Soil Science and Soil Protection, University of Warmia and Mazury, Łódzki spr. 3, 10-727 Olsztyn, e-mail: jan.pawluczuk@uwm.edu.pl

S u m m a r y. The paper presents the results of the studies on mineralization of nitrogen organic links in soils of two peat areas in the macro-region of the Mazurian Lakeland situated in young glacial zone of north-eastern Poland. The mineralization process results in the mineral nitrogen release, organic
matter decrement as well as in the lowering of soil surface. Mineralization intensity was diversified due to habitat conditions, particularly to soil dehydration condition and moisturization. Seasonal fluctuations were noted in mineral nitrogen release. It was shown that increased mineralization, including winter, took place in dehydrated, intensively utilized peat-moorsh soils. Limited mineralization occurred in highly moisturized soils. The collected results may be used in conservation and rational use of peat soils.

Key words: Young glacial areas, hydrogenic soils, nitrogen mineralization, nitrate nitrogen, ammonium nitrogen.